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Use Peng-Robinson or other EOS and find where the
fugacity ratio 1s 1

Antoine

Equation log o P*“=A ~BAT + C)

Which method depends on accuracy needed, availability of parameters, and

calculation speed required. For Clausius- Clapron Equation you can use
1) ecentricity, 2) critical point, 3) normal boiling point as reference points.

We want to know the vapor pressure to determine fractionation at vapor/liquid
equilibria in Chapter 10 for multicomponent systems



Gibb’s Free Energy decides phase equilibria at constant T and P
-SUV

H A
-pGT
dG=-SdT +VdP (depends on T and P)

GL =@V at equilibrium

dG = VdP (Constant T)

the ratio f/P to be the fugacity coefficient, .

g—;—;z—g—if) = ln(}l)) = Ing 9.22
(GLRTG 2 - LGFRTG E l"(f,';) - l“(%] l r=r ‘



Vapor/Liquid Equilibria From EOS
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Figure 9.6 Schematic illustration of the prediction of an isotherm by a cubic equation of state.
Compare with Fig. 9.5 on page 350. The figure on the right shows the calculation
of Gibbs energy relative to a reference state. The fugacity will have the same
qualitative shape.



CHAPTER

PHASE EQUILIBRIUM IN A 9
PURE FLUID

The ability to understand, model, and predict
phase equilibria 1s particularly important for designing separation processes. Typically, these opera-
tions comprise the most significant capital costs of plant facilities, and require knowledgeable engi-
neers to design, maintain, and troubleshoot them.

Phase equilib-

G=U+PV-TS dG = - SdT+ VdP 2.1 2“2:'03?.2353':’".
derstood using G,
which is a natural

SUV function of P, T.

H A
-pGT



9.1 CRITERIA FOR PHASE EQUILIBRIUM

As an introduction to the constraint of phase equilibrium, let us consider an example. A piston/cylinder
contains both propane liquid and vapor at —12°C. The piston is forced down a specified distance.
Heat transfer 1s provided to maintain isothermal conditions. Both phases still remain. How much does
the pressure increase?

This is a trick question. As long as two phases are present for a single component and the tem-
perature remains constant, then the system pressure remains fixed at the vapor pressure, so the
answer 18 zero increase. The molar volumes of vapor and liquid phases also stay constant since they
are state properties. However, as the total volume changes, the quantity of quuid increases, and the
quantity of vapor decreases. We are working with a closed system where n = n* + n”. For the whole
system: ¥ = pl patl 4 pVpsatV — popsatle o g (19454 and since 7 and 7Y are fixed
and Pk < ey . a decrease in ¥ causes a decrease in ¢."

G=U+PV-TS dG = ~ SdT+ VdP 9.1

dG' =dG" =0
For the whole system:
=Gt +n'GY by the product rule = dG = ntdG* + nVdGY + GEdn* + G¥dn"” 0.2
But by the mass balance, dn* = —dn” which reduces Eqn. 9.2 t0 0= G* - G " or
GL = GV- pure fluid phase equilibria 9.3

As an exercise, select from the steam tables an
arbitrary saturation condition and calculate G = H — 75 for each phase.
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Figure 7.1 Comparison of the PpT behavior of methane (left) and pentane (vight) demonstrating the
qualitative similarity which led to corresponding states’ treatment of fluids. The lines are
calculated with the Peng-Robinson equation to be discussed later. The phase envelope is an
approximation sketched through the points available in the plots. The smoothed experimental data
are from Brown, G.G, Sounders Jr., M., and Smith, R.L., 1932. Ind. Eng. Chem., 24:513. Although
not shown, the Peng-Robinson equation is not particularly accurate for modeling liguid densities.



9.1 CRITERIA FOR PHASE EQUILIBRIUM

As an exercise, select from the steam tables an
arbitrary saturation condition and calculate G = H — T for each phase.

E.9. Properties of Waterl
I. Saturation Temperature

/ P ) i L AL ( I A I s AS Y
("C) (MPa) m'/kg m'/kg Kkg klkg Kikg kg klkg kg KAg-K  KAgK  Kkg-K

001 0.000612 0.001000 05912 0.00 13490 23490 0.00 250092 250092 0.0000 01555 01558
§ 0000873 0.001000 147.0113 1m 2360.76 238178 21m 24894 2510.06 00763 8 0485 00248
10 0001228 0.001000 106.3032 20 234663 2388 68 20 U9 251921 0.1511 87487 8 8998
1§ 0.001706 0.00100] 778755 6298 2332 51 PEVAR 6298 2465 3§ 2528 33 02245 8 5558 87803
20 0002339 0.001002 §7 7567 £319] 23184) H402 3 £39] 2453 52 253743 0.2965 8 3695 8 6660
28 0.003170 0.001003 4331 104 83 2304 .30 W13 104 83 2441 68 2546.51 0.3672 5189 8 5566

At 25°C pure liquid G = 105 kJ/kg — 298°K 0.367 klJ/kg°K = -4 kJ/kg
pure vapor G = 2547 kJ/kg — 298°K 8.56 kJ/kg°K = -4 kl/kg

H A G=H-TS
-pGT



-SUV

H A
-pGT

dG=VdP-SdT

At V/L Equilibria

dGL = dGv

VVdPsit — SVdT = VLdPsat — SLAT
(VV-VL) dPsat = (SV-St) dT

Also

G=H-ST

At equilibrium AGvar =0
Tvap = AHvap / ASvap

From above

dPs+/dT = AHv+/(T(VV-VL))



9.2 THE CLAUSIUS-CLAPEYRON EQUATION
dGt=dG”

Rewriting the fundamental property relation = dG = V' dP** — 8 dT = V* dP*"' — §" dT and rear-
ranging,

= V'-vEdps = (- SYHdr 9.4

Entropy is a difficult property to measure. Let us use a fundamental property to substitute for
entropy. By definition of G: G" = H' - TS¥ = H- - TS" = G*

V s
sV _sF = astr - H THL ) _ AH; i 9.5

Substituting Eqn. 9.5 in for S~ S* in Eqn. 9.4, we have the Clapeyron equation which is valid for
pure fluids along the saturation line:

dp.mt A]_Ivap
‘ = 9.6
dT T v

Note: This general form of Clapeyron equation can be applied to any kind of
phase equilibrium including solid-vapor and solid-liquid equilibria by substitut-
ing the alternative sublimation or fusion properties into Egn. 9.6; we derived the
current equation based on vapor-liguid equilibria.

0 Clapeyron
equation.



Several simplifications can be made in the application to vapor pressure (i.e., vapor-liquid
equilibium).To write the equation in terms of Z* and Z*, we multiply both sides by 77 and divide
both sides by P¥:

T2 dpmt . AHvap

P AT pZV A

We then use calculus to change the way we write the Clapeyron equation:

sar

dP
prat

l) _ dT
7’

— dl Psar (_
dIn and d T

Combining the results, we have an alternative form of the Clapeyron equation:

rap
dn P! = ————‘Af‘ a(3) .
rZ -7 \T

For a gas far from the critical point at “low” reduced temperatures, Z"" — Z“ ~ Z’. In addition, for
vapor pressures near 1 bar, where ideal gas behavior is approximated, Z" = 1, resulting in the Clausius-
Clapeyron equation:

vap
dlnPsaz _ ~AH r](l)

R \T (ig) 9.8

The slope of a plot of InPsat versus 1/T 1s -AHvap/R (for 1deal gas approximation)

10



Example 9.1 Clausius-Clapeyron equation near or below the boiling point

Derive an expression based on the Clausius-Clapeyron equation to predict vapor-pressure depen-
dence on temperature.

Solution: If we assume that AH" ig fairly constant in some range near the boiling point, inte-
gration of each side of the Clausius-Clapeyron equation can be performed from the boiling point
to another state on the saturation curve, which yields

sat N ap
1n[P m} - —é-—;{v——[l——l-] 9.9
Py I Ty

where Py is 0.1013 MPa and T}, is the normal boiling temperature. This result may be used in
a couple of different ways: (1) We may look up AH" so that we can calculate P** at a new tem-
perature 7} or (2) we may use two vapor pressure points to calculate AH" and subsequently
apply method (1) to determine other P* values.

One vapor pressure point is commonly available through the acentric factor, which is the
reduced vapor pressure at a reduced temperature of 0.7. (Frequently the boiling point is near this
temperature.) That means, we can apply the definition of the acentric factor to obtain a value of
the vapor pressure relative to the critical point.

11




w=—log,o(pi*') — 1, at T}, = 0.7.

T
where T, = — is the reduced temperature, p;** =
c

P!at _AHVQ
m[p;ar] " TR p[%'—?‘l;]

Pc

is the reduced saturation vapor pressure.

12



9.3 SHORTCUT ESTIMATION OF SATURATION
PROPERTIES

sat ~AH'P l
(1) dinP " = ——d(-) 9.7
Clapeyron riZ -7 N\
equation. v
sat —AH'P (1)
GCIausius- dinf = R d T (1g) 9.8
Clapeyron equation.

The conclusion is that setting AH/AZ equal to a constant is a reasonable approximation,
especially over the range of 0.5 < T, < 1.0. The plot for ethane shows another nearly linear region
for 1/T, > 2 (temperatures below the normal boiling temperature), with a different slope and inter-
cept. The approach of the previous section should be applied at 7, < 0.5. Integrating the Clapeyron
equation for vapor pressure, we obtain,

Pvat AHl--ap |
In[P - 2H_(1 _-17) 9.10 @ The piotor
R RAZ"P T T InP* versus 1/ Tis
nearly linear.
U 0
024> 1%+
4

-04 4 -1 4 \+\

~ \ 2 +\+
o 06 <4 Q.‘ 2 1 ~

e — +
g -08 4 ) al \+
211 \ Y ~_
\c/b -1.2 4+ + =0 -4 4
S 4 N 25l ~_

16+

-6 +
184 \¢
2 t : : t o - , -
1 1.5 25 3

12
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/T,

16

18 2

2
T,

Figure 9.1 Plot to evaluate Clausius-Clapeyron for calculation of vapor pressures

at high pressures, argon (left) and ethane (right).



W= - logw(lﬁ-at) -1, at T, =07

Example 9.2 Vapor pressure interpolation

What is the value of the pressure in a piston/cylinder at —12°C (261.2 K) with vapor and liquid
propane present? Use only the boiling temperature (available from a handbook), critical proper-
ties, and acentric factor to determine the answer.

Solution: We will use the boiling point and the vapor pressure given by the acentric factor to
determine (—-AH P )/ (RAZ"P ) for Eqn. 9.10, and then use the boiling temperature with
(~-AH"" )/ (RAZ"P ) to determine the desired vapor pressure. First, let us use the acentric fac-
tor to determine the vapor pressure value at 7,= 0.7. For propane, 7,= 369.8 K, P, = 4.249 MPa,
and @ = 0.152. Solving for the vapor pressure in terms of MPa by rearranging the definition of
the acentric factor, (PS%*|  _ ) = P.10C01* 0.132)) = 0.2994 MPa.? The temperature corre-
sponding to this pressure 1s 7 = }',TL =0.7-369.8 = 258.9 K. The CRC handbook lists the nor-
mal boiling temperature of propane as —42°C = 231.2 K. Using these two vapor pressures in
Eqgn. 9.10:

In(0.2994/0.1013) = — AH"P{(RAZ"")(1/258.9 — 1/231.2) = - AH"#/{(RAZ) = 2342 K
Therefore, using the boiling point and the value of ~AH"#/(RAZ"?),

P9%(261.2 K) = 0.1013 MPa - exp[—2342(1/261.2 — 1/231.2)] = 0.324 MPa

The calculation 1s in excellent agreement with the experimental value of 0.324 MPa.

14



saf ap )
m(P ) - _iﬂ 1 9.10 w= —log,o(p®) -1, at T, = 0.7

Since the linear relationship of Eqn. 9.10 applies over a broad range of temperatures, we can derive
an approximate general estimate of the saturation pressure based on the critical point as the refer-
ence and acentric factor as a second point on the vapor pressure curve.

Setting Pp =P, and T = T,

ln(Pf,m) .

;_Afff’_(ﬂ_ﬂ) _ ﬂ(l_ 1)
R szap TC T TC R AZvap TC T'.

Common logarithms are conventional for shortcut estimation, possibly because they are more con-
venient to visualize orders of magnitude.

1 AH 1 1
1 Pmt _ (1 __-) = A( ——)
%8107 T 3303RAZT,\ T, Ty

Relating this equation to the acentric factor defined by Eqn. 7.2,

sat 1 ) 3 7
log P, T =07 (w+1) A( 07 7A > A 3(1 @)

which results in a shortcut vapor pressure equation,

sat 7 , 1
loglOPr = 3(1 + (1))(1 - T)

r

9.11 0 Shortcut vapor
pressure equation.
Use care with the
shortcut equation
below T,=0.5.

Note: The shortcut vapor pressure equation must be regarded as an approximation for rapid
estimates. The approximation is generally good above P = ().5 bar; the percent error can
become significant at lower pressures (and temperatures). Keep in mind that its estimates are
based on the critical pressure which is generally 40-50 bar and acentric factor (at T, = ().7).




LB

log o P = _;“,N,:, 'r|' 91

Example 9.3 Application of the shortcut vapor pressure equation

Use the shortcut vapor pressure equation to calculate the vapor pressure of propane at —12°C, and
compare the calculation with the results from Example 9.2.

Solution: For propane at —12°C, T, = 261.2/369.8 = 0.7063,
(1 +w) [ 1

ot 3L 0706
P (-12°C)~ P, 10 =0.324 MPa

This is in excellent agreement with the result of Example 9.2, with considerably less effort.

16



dinp'" =

Y
rz - 74

7

Example 9.4 General application of the Clapeyron equation

Liquid butane is pumped to a vaporizer as a saturated liquid under a pressure of 1.88 MPa. The
butane leaves the exchanger as a wet vapor of 90 percent quality and at essentially the same pres-
sure as it entered. From the following information, estimate the heat load on the vaporizer per
gram of butane entering.

For butane, 7, = 4252 K; P, = 3.797 MPa; and ® = 0.193. Use the shortcut method to estimate
the temperature of the vaporizer, and the Peng-Robinson equation to determine the enthalpy of
vaporization.

Solution: To find the T at which the process occurs:*

7 1 B :
log,(P3%) = 3(1 +(o)(l _F) = T3 = 090117, T=383.2K

First, we use the Peng-Robinson equation to find departure functions for each phase, and subse-
quently determine the heat of vaporization at 383.2 K and 1.88 MPa:

H - H® H'L—Hig=_5 »s6.
RT 299

=-0.9949;
RT ’
Therefore, AH" =(—0.9949 + 5.256)8.314-0.90117-425.2 = 13,575 J/mol

Since the butane enters as saturated liquid and exits at 90% quality, an energy balance gives
0=0.9-13,575= 12,217 J/mol -1mol/58g = 210.6 J/g

Alternatively, we could have used the shortcut equation another way by comparing the Clapey-
ron and shortcut equations:

Clapeyron:  In(P*“) = — AH"P/RT(Z" - 71 + AH"?/RT(Z" - 71 + nP,

Shorteut:  In(P*)= 2.3025%’(1 + m)(l - Tl) +nP,
r

Comparing, we find: AHT
R szap

= 2.302532(1 +w)T- = 2725K

Therefore, using the Peng-Robinson equation at 383.3 K and 1.88 MPa to determine compress-
ibility factor values,

AHVP = 2725R(ZV—ZL) = 2725(8.314)(0.6744 - 0.07854) = 13,500 J/mol

which would give a result in good agreement with the first approach.

17



The Antoine Equation

The simple form of the shortcut vapor-pressure equation 1s extremely appealing, but there are times
when we desire greater precision than such a simple equation can provide. One obvious alternative
would be to use the same form over a shorter range of temperatures. By fitting the local slope and
intercept, an excellent {it could be obtained. To extend the range of applicability slightly, one mod-
ification 1s to introduce an additional adjustable parameter in the denominator of the equation. The
resultant equation is referred to as the Antoine equation:

logm Pt =4 —B/(T"‘ C) 9.12

18



ShOI’t Cut MethOd long:” = ;i( | - m_)f | Tl:’ 9.11 0 Shortcut vapor
. . 4 press quation
Approximation Use caro wih the
shoricut equation

below T,=05

Clausius-Clapyron (P AR

' 12 9.10
Equation \Pr) RaZ“P\T Ty

Use Peng-Robinson or other EOS and find where the
fugacity ratio 1s 1

Antoine

Equation log,g P*“=A ~BAT + C)

Which method depends on accuracy needed, availability of parameters, and

calculation speed required. For Clausius- Clapron Equation you can use
1) ecentricity, 2) critical point, 3) normal boiling point as reference points.

19



9.4 CHANGES IN GIBBS ENERGY WITH PRESSURE

dG = -SdT + VdP
dG = VdP(const. T)
P,

G,~G, = [ vdP(const. T) 9.14

P,

20



Gibbs Energy in the Low-Pressure Limit

The calculation of AG is illustrated in Fig. 9.2, where the shaded area represents the integral. The  ___ o
slope of a G versus P plot at constant temperature is equal to the molar volume.For a real fluid, the  dG = —SdT + VdP.
ideal-gas approximation is valid only at low pressures. The volume is given by V' = ZRT/P; thus,

dG = RTZ ‘E 9.15
P
T= 7;
O
- ’// ; P P,
O Ty 2 2
' ~G, = | VdP(const. T)
5 =
%) - >
P, AN
! D .
0 P isat L sat Vo
R M N
Pressure

Volume

Figure 9.2 Schematic of dependence of G on pressure for a real fluid at Ty, and an isothermal
change on a P-V diagram for a change from P to P,

21



Gibbs Energy in the Low-Pressure Limit

The calculation of AG is illustrated in Fig. 9.2, where the shaded area represents the integral. The
slope of a G versus P plot at constant temperature is equal to the molar volume.For a real fluid, the
ideal-gas approximation is valid only at low pressures. The volume is given by V' = ZRT/P; thus,

_ ergdP
dG = RTZ 2
dGig = RT‘%J — RTdInP
P2
| P
aGie = [RL 4p = RTIn-2
P P,
'Pl

9.15

(ig) 9.16

G,

(ig) 9.17

dG = —SdT + VdP

PZ’
-G, = [ vaP(const. )

P,

Both dG and dG* become infinite as pressure approaches zero. This means that both Eqns. 9.15
and 9.16 are difficult to use directly at low pressure. However, as a real fluid state approaches zero
pressure, Z will approach the ideal gas limit and dG approaches dG*. Thus, the difference dG — dG*

will remain finite, and goes to zero as P goes to zero. Thus,

dG — dG* = d(G — G*)

d(G — G®)/RT=(Z— 1)/P dP

9.18 )



(

Pressure Dependent Formulas

(=t W_z\, ap
. o/ p P

. P
) - -+ )4
0

-SUV

H A
-pGT

G=H-ST

d(G - G*)/RT=(Z—-1)/PdP

8.29

8.30

9.18
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9.5 FUGACITY AND FUGACITY COEFFICIENT

In principle, all pure-component, phase-equilibrium problems could be solved using Gibbs energy.
Historically, however, an alternative property has been applied in chemical engineering calcula-
tions, the fugacity. The fugacity has one advantage over the Gibbs energy in that its application to
mixtures is a straightforward extension of its application to pure fluids. It also has some empirical
appeal because the fugacity of an ideal gas equals the pressure and the fugacity of a liquid equals
the vapor pressure under common conditions, as we will show in Section 9.8. The vapor pressure
was the original property used for characterization of phase equilibrium by experimentalists.

dG - er"Tf3 9.15
- dP X ,
dG's = RT <2 = RTdInP (ig) 9.16
dG = VdP=RTdInf 9.19
d(G — Gig)/RT= d In (f/P) 0.20

the ratio f/P to be the fugacity coefficient, @.

ig
@%—TG—J - 1n(113) - e 9.22

24



ig
(GR7('; ) _ ln({;} = Ing

Arrhenius (1859-1927) Function:

Probability = exp(-AE/kT) or = exp(-AE/RT)
Gives the probability of an event happening if the event is thermally activated; 1.e. if the
probability changes with the temperature.

Viscosity = Viscosityo exp(- AEa/kT) Flow happens when atoms thermally move out of the
way with an activation energy AEa

Vapor Pressure = Po exp(-AEvap/kT) Antoine equation
AEvap — AHvap —T ASVap
Psat = Po eXp(A— B/ (T+C)) A=— ASVap/R B= AHvap C= Temp for no Psat

Entropy prob. =exp(S/R) Energy with no enthalpy (Boltzman equation)

Fugacity
/P = exp((G-Gie)/RT) = probability of a molecule escaping from a phase
G=H-TS 1s ameasure of the balance between enthalpic attractions and thermally driven

dispersion of the molecules. So fis a measure of the dispersibility of a phase, the more
dispersible the less stable. Lower fugacity 1s the more stable phase.

Arrhenius accurately predicted global warming due to CO: in a paper published in 1896 which
was widely read. His calculations were within 10% of current global temperature rises.



- P P
(G-G) _ e - L e - [ (Z=1)
RT 1"(110) In¢ RTIO(V V¥)ap IO 5 dP 9.23

(G-G*) _ m(i) - J’pﬂz;plldpﬂz-l)—lnz 9.4

i 0

Note: In practice, we do not evaluate the fugacity of a substance directly. Instead,
we evaluate the fugacity coefficient, and then calculate the fugacity by

f= P 9.25
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Pressure
/(/
7/

] N

\ N
’QD‘L Sat VO 10P=0

Volume
Figure 9.3 lllustration of RT In @ as a departure

Jfunction.

G G'® Lt P(z-1
£T2 - 1,.(%) = Ing = ﬁIO(V_ V'EYdP = IO L—;,—-)dP 9.23

A graphical interpretation of the fugacity coeflicient can be seen in Fig. 9.3. The integral of
Eqgn. 9.23 1s represented by the negative value of the shaded region between the real gas isotherm

and the ideal gas 1sotherm. The fugacity coeflicient 1s a measure of non-ideality. Under most com-
mon conditions, the fugacity coefficient is less than one. At very high pressures, the fugacity coefhi-
cient can become greater than one.

27



9.6 FUGACITY CRITERIA FOR PHASE EQUILIBRIA

We began the chapter by showing that Gibbs energy was equivalent in phases at equilibrium. Here
we show that equilibrium may also be described by equivalence of fugacities. Since

GE = G7 93

we may subtract G from both sides and divide by RT] giving

(GL_Gig) _ (GV— Gig)

RT RT 9.26

Substituting Eqn. 9.22,  “S - wlf - we

n(’5) = ()

which becomes

=1 9.27

28



9.7 CALCULATION OF FUGACITY (GASES)

(G—;f—ig) - (L) = e - 1’51?.[:(1/_ V'&)dp = J’:@%de

Ideal Gas
@€ = 1 andf%4=P

The Virial Equation

The virial equation may be used to represent the compressibility factor in the low-to-moderate
pressure region where Z is linear with pressure at constant temperature. Eqn. 7.10 should be used to
evaluate the appropriateness of the virial coefficient method. Substituting Z =1 + BP/RT.or Z—1 =
BP/RT into Egn. 9.23,

B BP
In =j 2 gp = 825 9.30
¢ ORTd RT
Thus,
BP
In o = 2L 931
Y RT

Writing the virial coefficient in reduced temperature and pressure,

P I
np = X(8°+wB") 9.32

?

where B" and B! are the virial coefficient correlations given in Eqns. 7.8 and 7.9 on page 259.

9.23

(ig) 9.29

29



The Virial Equation

Z=1+B"+wB“YWP,/T. or Z=1+BP/RT 7.6
where B(T) = (B + @B")RT./P, 7.7
B"=10.083 — 0.422/T,!® 7.8

B'=0.139 - 0.172/T,*2 7.9

Subject to T, > 0.686 + 0.439P, or ¥, > 2.0 7.10

30




9.7 CALCULATION OF FUGACITY (GASES)
The Peng-Robinson Equation

or the equivalent form for P-F-T data in the form Z = f(T V), which 1s essentially Eqn. 8.26,

(G-G"®) "(Z-1
GR;; = 111(}1,) = j;L—;—)dp+(Z— [)-InZ 9.24

which 1s the form used for cubic equations of state.

1 ap/RT
(1-bp) (1+2bp-b2p?)

Z -

Z+(1+J§)B L7 9.33
Z+(1—J§)B] '

Ing = —ln(z—B)——‘-"—ln[

B./8

To apply, the technique is analogous to the calculation of departure functions. At a given P, 7, the
cubic equation is solved for Z, and the result is used to calculate ¢ and then fugacity is calculated,
| = @P . This method has been programmed into Preos.xIsx and Preos.m.
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Example 8.6 Gibbs departure for the Peng-Robinson equation

Obtain a general expression for the Gibbs energy departure function of the Peng-Robinson equation.

z__ 1 ap/RT
(1-bp) (1+2bp—b2p?) .

£ i )
(€G-« w(f) = [ELype(z-1)- w2
o 7

Solution: The answer is obtained by evaluating Eqn. 8.26. The argument‘ for the integrand 1s

| _1-bp _ (ap)/RT _ _ _bp ,  ap/RT

Z-1=
L=bp 1-bp (1+2bp-02p2)y (1-bp) (1+2bp-b2p?)

Evaluating the integral (similar to the integral in Example 8.5), noting again the change in inte-
gration variables,

bp bp bp

j (z-1)dbL) _ [ dbp) , _a d(bp)

bp (1-bp) BRTJ (1+2bp-p2p?)
0 0

0

A-A®ry o _a o [1+(1+.2)bp
RT n(1-560) bRT./8 [|+(|_J§)bp]

Making the result dimensionless,

ig
(G-G*) _ 7 | iz 5y A p[ZE(+2)B 8.36
RT '

B.J8 Lz+(11-.J2)B




9.7 CALCULATION OF FUGACITY (GASES)

0.5

Generalized Charts
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(G -G*)/RT = mo'
o

Ing = Ine?+ wlne!

~

0 1 2 3 4 5 6 7 8 9 10

Fig. 9.4 can be useful for hand calculation, if you do not have a computer. A sample calculation Reduced Pressure, P,
for propane at 463.15 and 2.5 MPa gives

In(f/P) =

= —0.1+0.152(0.05) = -0.09

G-Gig
RT

compared to the value of —0.112 from the Peng-Robinson equation. 1

(3]

-3
0 1 2 3 4 5 6 7 8 9 10

Reduced Pressure, P,
Figure 9.4 Generalized charts for estimating the Gibbs departure function using the Lee-Kesler equation

of state. (G — G'S)O/RT uses @ = 0.0, and (G— Gig)]/RT is the correction factor for a hypothetical
compound with @ = 1.0.



9.8 CALCULATION OF FUGACITY (LIQUIDS)

7

Pressure

87/

I saf L sat V.

Volume

Figure 9.5 Schematic for calculation of Gibbs energy
and fugacity changes at constant temperature
Jor a pure liguid.

fe=fa =" 9.36
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9.8 CALCULATION OF FUGACITY (LIQUIDS)
Poynting Method

dG = VdP=RTdInf 9.19 r<T,

Pressure

RTInI2. ” VdP 9.37 F/ // / //1«

Sar
f P J wul sat V \

Volume

Since liquids are fairly incompressible for 7, < 0.9, the volume is approximately constant, and may
be removed from the integral, with the resultant Poynting correction becoming

L - (VL(P il )) 9.38
fsar RT
Gp i i sat nsat VL(P Pmt)
= P
methc::l ?ornligquids. / 9 ex ( RT )

35
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Saturated liquid volume can be estimated within a slight percent error using the Rackett equation

satl _

1-T,
ok _y AT

c C

0.2857

9.40

The Poynting correction, Eqn. 9.38, is essentially unity for many compounds near room 7 and P;

thus, it is frequently ignored.

war
/

L sSar__sar L~ sar
ff=9 P | orcommonly | J =P 9.41 0Fnaquent
approximation.
. s sar
VPP
"“’( RT ) 738
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9.8 CALCULATION OF FUGACITY (LIQUIDS)
Equation of State Method

G-G* "(Z-1
L—E—i_——) - ln(ﬁ) _— J-;L—/;—)d/‘)'f‘(z l) InZ 924

w(1+./
Ing = —In(Z— B)— -4 ln[z ( ~2)BJ +7Z-1 9.33
B.JJ8 LZ+(1-J2)B
G,-G, = J:VdP(consl. N 9.14
PI
et PD van der Waals loop B’
%
172] C‘l
2 & se NP
' Liquid
sa )
p 0F — A  Vapor
| fixed T
Pressure
(b)

Figure 9.6 Schematic illustration of the prediction of an isotherm by a cubic equation of state.
Compare with Fig. 9.5 on page 350. The figure on the right shows the calculation
of Gibbs energy relative to a reference state. The fugacity will have the same
qualitative shape.
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Example 9.5 Vapor and liquid fugacities using the virial equation

Determine the fugacity (MPa) for acetylene at (a) 250 K and 10 bar, and (b) 250 K and 20 bar.
Use the virial equation and the shortcut vapor pressure equation.

Solution: From the back flap of the text for acetylene: T,=308.3 K, P, =6.139, »=0.187, Z,= L

0.271. For each pax_1 of tl?e problem, the ﬂl..lid state of aggregation is determin.ed before the log, cf: " el 1) 9an
method of solution is specified. At 250 K, using the shortcut vapor pressure equation, Eqn 9.11, 3 T,

the vapor pressure is P*' = 1.387 MPa.

We will calculate the virial coeficient at 250 K using Eqns. 7.7-7.9: Z=1+(B"+@B"YP,/T, or Z=1+BPRT

T,=250/308.3=0.810, B° =-0.5071, B'= -0.2758, B=-233.3 cm’/mol. 0 .
where B(T) = (B” + wB")RT,/P,

(a) P=1MPa < P o the acetylene is vapor (between points 4 and B in Fig. 9.5). Using B%=0.083 - 0.422/T,1¢
Eqn 7.10 to evaluate the appropriateness of the virial equation at 1 MPa, P, = 1/6.139 . .
=0.163, and 0.686 +0.439P, = 0.76 and T, = 0810, so the correlation should be accu- B =0.139-0.172/T,*
rate.

Subject to 7, > 0.686 + 0.439P, or V, > 2.0

Using Eqn. 9.31,

lng = B2 - Z233(1) _ 44194
RT 8314(250)

(f= ¢ P=0.894 (1) = 0.894 MPa

(b) P =2 MPa > P 5o the acetylene is liquid (point D of Fig. 9.5). For a liquid phase, the
only way to incorporate the virial equation is to use the Poynting method, Eqn. 9.39.
Using Eqn. 7.10 to evaluate the appropriateness of the virial equation at the vapor pres-
sure, P = 1.387/6.139 = 0.2259, and 0.686 + 0.439P,*"' = 0.785, and T, = 0.810, so the

correlation should be accurate.
At the vapor pressure,
sat \
|“¢7m _BP _ 2333(1387) _ 156 I sat L sat V

RT 8.314(250) " N
4= ¢™ P =0.8558(1.387) = 1187 MPa Volume
Using the Poynting method to correct for pressure beyond the vapor pressure will require
the liquid volume, estimated with the Rackett equation, Eqn. 9.40, using V, = ZRTe/P, = f =g P""cxp( Vp-p' ‘"))
0.271(8.314)(308.3)/6.139 = 113.2 cm®/mol. RT 9.39

0.2837
5ot~ 113200271 M9 2 503 endimol , 17,027
(0270) o pat ~y T 9.40

The Poynting correction is given by Eqn. 9.38,

(5032 138)) _
Iz e"P( 8.314(250)) 1013

Thus, f=1.187(1.015) = 1.20 MPa. The fugacity is close to the value of vapor pressure

for liquid acetylene, even though the pressure is 2 MPa. 38




9.9 CALCULATION OF FUGACITY (SOLIDS)

Fugacities of solids are calculated using the Poynting method, with the exception that the volume in
the Poynting correction is the volume of the solid phase.

S~
[|

S sat .sat
@

P

D ( VS(P - P""))

RT

fS=

Sar sar

or commonly

. sar
fS=P

9 .42 0 poyntjng
method for solids.

9.43 O oouent

approximation.
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9.10 SATURATION CONDITIONS FROM AN
EQUATION OF STATE

The only thermodynamic specification that is required for determining the saturation temperature
or pressure is that the Gibbs energies (or fugacities) of the vapor and liquid be equal. This involves
finding the pressure or temperature where the vapor and liquid fugacities are equal. The interesting
part of the problem comes in computing the saturation condition by iterating on the temperature or
pressure.

40



Example 9.6 Vapor pressure from the Peng-Robinson equation

Use the Peng-Robinson equation to calculate the normal boiling point of methane.

Solution: Vapor pressure calculations are available in Preos.xlsx and PreosPropsmenu.m. Let us
discuss Preos.xlsx first. The spreadsheet is more illustrative in showing the steps to the calcula-
tion. Computing the saturation temperature or pressure in Excel is rapid using the Solver tool in
Excel.

BT Microsoft Excel - PREOS.XLS =13
] Fe Edt Vew [nsert Format Toos Data Aspen Window Heb -ax
M13 - I3
A [ B | ¢ [ o | & [ ¢ [ 6 [ w [ 1 [ 3 T « A

1 |Peng-Robinson Eguation of State (Pure Fluid Spreadsheet protected, but no password used

2 |Properties

3 |Gas |T: (K P. (MPa Ie:

4 [METHANE| 19058 2604 | 0011 |

B Intermediate Calculations

6 |Current State Roots R(cm*MPa/molK) 8.31447 |
- — - -

7 [T 1mao7] z Y fugacity T, 0.58451|a (MPa cm®/gmor)

8 |P(MPa 0.1 cm*/gmol Pa P, 0.02172| 287527

9 | answers forthree 0.96736 8960.58] 0.09683) K 0.39157|b {cm®/gmol) |

10 root region 0.02611 241.835 o 1.19291| 26.7781

1 0.00264 33.6924) 0.0%683 fugacity ratio A 0.03468

12 | & for 1 root region VOENUMT T S#NUM SNUM 1|8 0.00289

13 Stable Root has a lower fugacity To find vapor pressure, or saturation temperature,

14 see cell A28 for instructions v
W 4 » m\ Instructions ) PVT £ Props £ Ref State £|< | >
Ready NUM

Figure 9.7 Example of Preos.xlsx used to calculate vapor pressure.

On the spreadsheet shown in Fig. 9.7, cell H12 is included with the fugacity ratio of the two
phases; the cell can be used to locate a saturation condition. Initialize Excel by entering the
desired P in cell B8, in this case 0.1 MPa. Then, adjust the temperature to provide a guess in the
two-phase (three-root) region. Then, instruct Solver to set the cell for the fugacity ratio (H12) to
a value of one by adjusting temperature (B7), subject to the constraint that the temperature (B7)
is less than the critical temperature.

In MATLAB, the initial guess is entered in the upper left. The “Run Type” is set as a saturation
calculation. The “Root to use™ and “Value to match” are not used for a saturation calculation.
The drop-down box “For Matching...” is set to adjust the temperature. The results are shown in
Fig. 9.8.

For Matching U, H, S,
40 100 P(MPa)‘ 01 ‘ Root to use: or Saturation
@ large Z adjust T v
Walue to match:
Run Type O small Z elomateh:
0
(O No Matching, use specified TP
O Match U — Results
methane

O Match H

TK) 111407 P(MPa) 01

N h
© Maich § z 0967364 000363734
@ Find Saturation V (em3imol) 8960.43 336917
© User Objective, Adjust T and P U (Jimal) 661694 -13934.4
. L ; H (Jimal) 572088 -13931
The fluid is specified by editing PreosProps m. S (Iimol-K) .29.3875 -103.083
Save the file, and then fill in the information here.
fugacty (MPay 00968311 0.0968311
Calculate User Objecive -1.11022¢-015

Figure 9.8 Example of PreosPropsMenu.m used to calculate vapor pressure.

For methane the solution is found to be 111.4 K which is very close to the experimental value
used in Example 8.9 on page 320. Saturation pressures can also be found by adjusting pressure
at fixed temperature.
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Figure 9.9 Predictions of the Peng-Robinson equation of state for CO,: (a) prediction of the

P-V isotherm and fugacity at 280 K (b) plot of data from part (a) as fugacily versus pressure,
showing the crossover of fugacity at the vapor pressure. Several isotherms for CO , are shown

in Fig. 7.5 on page 264.
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Figure 7.5 Hlustration of the prediction of isotherms by the Peng-Robinson equation
of state for CO» (T, =304.2K) at 275 K, 290K, 300K, 310K, 320K, and 350 K.
Higher temperatures result in a high pressure for a given volume. The “humps”
are explained in the text. The calculated vapor pressures are 36.42 bar at 275 K,
53.2 bar at 290 K, and 67.21 bar at 300 K.
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Figure 9.6 Schematic illustration of the prediction of an isotherm by a cubic equation of state.
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Compare with Fig. 9.5 on page 350. The figure on the right shows the calculation
of Gibbs energy relative to a reference state. The fugacity will have the same

qualitative shape.



Example 9.7 Acentric factor for the van der Waals equation

To clarify the problem with the van der Waals equation in regard to phase-equilibrium calcula-
tions, it is enlightening to compute the reduced vapor pressure at a reduced temperature of 0.7.
Then we can apply the definition of the acentric factor to characterize the vapor pressure behavior
of the van der Waals equation. If the acentric factor computed by the van der Waals equation
deviates significantly from the acentric factor of typical fluids of interest, then we can quickly
assess the magnitude of the error by applying the shortcut vapor-pressure equation. Perform this
calculation and compare the resulting acentric factor to those on the inside covers of the book.

Solution: The computations for the van der Waals equation are very similar to those for the Peng-
Robinson equation. We simply need to derive the appropriate expressions for ag, @, and a,, that
go into the analytical solution of the cubic equation: Z*+ a, 7+ ayZ+ay=0.

Adapting the procedure for the Peng-Robinson equation given in Section 7.6 on page 263, we
can make Eqn. 7.13 dimensionless:

1 ap_ _1 4

_ 4 9.44
1-bp RT 1-B/Z Z

where the dimensionless parameters are given by Eqns. 7.21-7.24; 4 = (27/64) P,/T,%;
B=0.125P./T,.

After writing the cubic in Z, the coefficients can be identified: ay = -4B; a; = A; and
ay = —(1 + B). For the calculation of vapor pressure, the fugacity coefficient for the van der
Waals equation is quickly derived as the following:

e
Z-1 4
in(£) = [Erap+z-1-mz = -nz-B)-2+2-1
P o P n n( ) 7
0

9.45

Substituting these relations in place of their equivalents in Preos.xIsx, the problem is ready to be
solved. Since we are not interested in any specific compound, we canset 7,=1and P, =1, T,
=0.7. Setting an initial guess of P,= 0.1, Solver gives the result that P, = 0.20046.

Modification of PreosPropsMenu.m is accomplished by editing the routine PreosProps.m. Search
for the text “global constants.” Change the statements to match the @ and b for the van der Waals
equation. Search for “PRsolveZ” Two cases will be calls and you may wish to change the func-
tion name to “vdwsolveZ.” The third case of “PRsolveZ” will be the function that solves the
cubic. Change the function name. Edit the formulas used for the cubic coeflicients. Finally, spec-
ify a fluid and find the vapor pressure at the temperature corresponding to 7, = 0.7.

The definition of the acentric factor gives
o =-log(P,) — 1 =-10g(0.20046) — 1 = -0.302

Comparing this value to the acentric factors listed in the table on the back flap, the only com-
pound that even comes close is hydrogen, for which we rarely calculate fugacities at 7, < 1. This
is the most significant shortcoming of the van der Waals equation. This shortcoming becomes
most apparent when attempting to correlate phase-equilibria data for mixtures. Then it becomes
very clear that accurate correlation of the mixture phase equilibria is impossible without accurate
characterization of the pure component phase equilibria, and thus the van der Waals equation by
itself is not useful for guantitative calculations. Correcting the repulsive contribution of the van
der Waals equation using the Carnahan-Starling or ESD form gives significant improvement in
the acentric factor. Another approach is to correct the attractive contribution in a way that cancels
the error of the repulsive contribution. Cancellation is the approach that historically prevailed in
the Redlich-Kwong, Soave, and Peng-Robinson equations.

w=—log(p;™) - 1, at T,, = 0.7

L
at 7 |
k‘gl,:f': ;(1 o) 1 T

r

RT a RT 1 a,
p=2L__a _ pRI .2 = - .
-bh 2 1-bp apor (1-bp) RT 7.12 Eoos\.landerWaals
where p = molar density = n/V.
2,2
7R T‘, RTL
= H b=m—= 7.13
=8P, 8P,

_ _ bp a
Z = 1+2Zrep 4 7ot = | 4 -42 7.14 oThevandebr

1-bp RT Waals equation v
A =aP/R?T? 7.21
B = bP/RT 7.22
G-G*®) _ . (f =r'£ﬂ2
(GG - (£ o o+ (@-1)-hnZ 9.24
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The Equal Area Rule

(G"-G*) _ (G"-G"%)
RT RT

9.26

(G-G*®) _ ln(ﬁ) _ I:L%)dp-{-(z 1)~ InZ

== 9.24!

GL_ GV _ GL_G"&'_GV—G"g _ LZ—l

do+7ZL -7V _Wn(zZL/ZV 9.46

RT RT RT o P g " )

L L

V

GL-G =_J' (_’i_l)dV+-1-(PVL—PV")—ln(M 9.47
RT w \RT V. RT | PVY/RT

(PVL PVY) - I ( )dV+J' (L)ar-m(5) 9.48
RT -V v

GLR_TGV —1{ pr” # j’ PdV} 9.49
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Figure 9.6 Schematic illustration of the prediction of an isotherm by a cubic equation of state.
Compare with Fig. 9.5 on page 350. The figure on the right shows the calculation
of Gibbs energy relative to a reference state. The fugacity will have the same
qualitative shape.



Although Eqn. 9.49 illustrates the concept of the equal area rule most clearly, it 1s not in the
form that is most useful for practical application. Noting that G* = G" at equilibrium and rearrang-

ing Eqn. 9.47 gives
L
Z-1 VL RT
P = _r =——dp-In ] 9.50
( p¥ P (VV) [(VV_ VL)}

You should recognize the first term on the right-hand side as (4%~ 4%);, — (4" — 4%) . . You prob-
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P0 = (Prmax+Pmin)/2

Example 9.8 Vapor pressure using equal area rule

Convergence can be tricky near the critical point or at very low temperatures when using the
equality of fugacity, as in Example 9.6. The equal area rule can be helpful in those situations. As
an example, try calling the solver for CO, at 30°C. Even though the initial guess from the shortcut
equation is very good, the solver diverges. Alternatively, apply the equal area rule to solve as
described above. Conditions in this range may be “critical” to designing CO, refrigeration sys-
tems, so reliable convergence is important.

Solution: The first step is to construct an isotherm and find the spinodal densities and pressures.
Fig. 9.10 shows that P,;, = 7.1917, P, = 7.2291, V. = 117.98, and V,;, = 94.509. Following
the procedure above, P, = 7.2104. Solving for the vapor and liquid roots at P, in the usual way
gives ¥, = 129.842, and ¥, = 88.160. Similarly, (4"~ 4%);.,, = ~1.0652 and (4"~ 4%) ;. =

~0.7973, referring to the formula given in Example 8.6 on page 317:

A=Ay @ [1+(1+2)bp
RT o{1=2p) bRTﬁn[l+(l—.ﬁ.)bp}

This leads to the next estimate of P* as,
P =[-1.0652 + 0.7973 — In(88.160/129.842)][8.314(303.15)/(129.842 — 88.160)] = 7.2129

Solving for the vapor and liquid roots and repeating twice more gives: P* = 7.21288, shown
below. Note the narrow range of pressures.

7.28
7.26 -
7.24 -

722 - / O\
724 \/

7.18 -
7.16 -

P(MPa)

Figure 9.10 Illustration of use of the equal area rule for a 714 T y
small van der Waals loop. 75 100 125 150

V(cc/mol)
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9.11 STABLE ROOTS AND SATURATION CONDITIONS

350
¢ Large Z root
0 Center root
300 ASmall Z root
A“ D% /
250 N N
200K J
200 T T .
T(K) : - o 4
184.2K
150 » & +
/
100 i +
150K
De
50
-180 -160 -140 -120 -100 -80 -60 -40 -20 0

S(J/mol-K)

Figure 9.11 Entropy values for ethane calculated from the Peng-Robinson equation along
an isobar at 0.1 MPa. The largest Z root is shown as diamonds, the smallest Z
root is shown as triangles, and the center root is shown as open squares. The
stable behavior is indicated by the solid line.

Suppose a process problem requires a state with § = —18.185 J/mol-K. At 200 K, the largest Z
root has this value. The corresponding values of the fugacities from largest to smallest Z are 0.0976
MPa, 0.652 MPa, and 0.206 MPa, indicating that the largest root is most stable, so the largest root
will give the remainder of the state variables.
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9.11 STABLE ROOTS AND SATURATION CONDITIONS

350

¢ Large Z root
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Figure 9.11 Entropy values for ethane calculated from the Peng-Robinson equation along
an isobar at 0.1 MPa. The largest Z root is shown as diamonds, the smallest Z
root is shown as triangles, and the center root is shown as open squares. The
stable behavior is indicated by the solid line.

Suppose a process problem requires a state with § = -28.35 J/mol-K. At 150 K, the largest Z
root has this value. The corresponding values of the fugacities from largest to smallest Z are 0.0951
MPa, 0.313 MPa, and 0.0099 MPa, indicating that the smallest root is most stable. Even though the
largest Z root has the correct value of S, the root 1s not the most stable root, and must be discarded.
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9.11 STABLE ROOTS AND SATURATION CONDITIONS
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Figure 9.11 Entropy values for ethane calculated from the Peng-Robinson equation along
an isobar ai 0.1 MPa. The largest Z root is shown as diamonds, the smallest Z
rool is shown as triangles, and the center root is shown as open squares. The
Further exploration of roots would show that the desired value of § cannot be obtained by the
middle or smallest roots, or any most stable root. Usually if this behavior is suspected, it is quickest
to determine the saturation conditions for the given pressure and compare the saturation values to
the specified value. (Think about how you handled saturated steam calculations from a turbine
using the steam tables and used the saturation values as a guide.) The saturation conditions at 0.1
MPa can be found by adjusting the 7 until the fugacities become equal for the large Z and small Z
roots, which is found to occur at 184.2 K. At this condition, the corresponding values of the fugaci-
ties from largest to smallest Z are 0.0971 MPa, 0.524 MPa, and 0.0971 MPa, indicating that largest
and smallest Z roots are in phase equilibrium, and the center root is discarded as before. The corre-
sponding values for saturated entropy are § = -21.3021 J/mol-K for the vapor phase and —100.955
J/mol-K for the liquid phase. For any condition at 0.1 MPa, any value of S between these two val-
ues will fall in the two-phase region. Therefore, the desired state of § = —28.35 J/mol-K is two-
phase, with a quality calculated using the saturation values,

S= Ss‘a{L +gq (Ss‘ulV_ S\‘alL)
~28.35 J/mol-K = —100.955 + g(-21.3021 + 100.955). Solving, g = 0.912 51



9.12 TEMPERATURE EFFECTSON G AND fF

The effect of temperature at fixed pressure 1s

o
—_— = - 9.51
(ag)p S >

The Gibbs energy change with temperature 1s then dependent on entropy. Gibbs energy will
decrease with increasing temperature. Since the entropy of a vapor is higher than the entropy of a
liquid, the Gibbs energy will change more rapidly with temperature for vapor. Since the Gibbs
energy 1s proportional to the log of fugacity, the fugacity dependence will follow the same trends.
Similar statements are valid comparing liquids and solids.’
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Table 9.1 Techniques for Calculation Pure Component Fugacities

JUIOS

1. Ideal gas law

2. Equation of state
a. Virial equation (¥, = 2)
h. Cubic equation

1. Poynting method”
2. Equation of state (cubic
unless combined with

Poynting).

1. Poynting method”

a. The saturation fugacity may be determined by any of the methods for gases, and the Poynting correction is

omitted near the vapor pressure.
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